25 research outputs found

    On the piecewise-concave approximations of functions

    Full text link
    The piecewise-concave function may be used to approximate a wide range of other functions to arbitrary precision over a bounded set. In this short paper, this property is proven for three function classes: (a) the multivariate twice continuously differentiable function, (b) the univariate Lipschitz-continuous function, and (c) the multivariate separable Lipschitz-continuous function.Comment: 4 pages; written as a supplement to submitted journal pape

    Sufficient Conditions for Feasibility and Optimality of Real-Time Optimization Schemes - II. Implementation Issues

    Get PDF
    The idea of iterative process optimization based on collected output measurements, or "real-time optimization" (RTO), has gained much prominence in recent decades, with many RTO algorithms being proposed, researched, and developed. While the essential goal of these schemes is to drive the process to its true optimal conditions without violating any safety-critical, or "hard", constraints, no generalized, unified approach for guaranteeing this behavior exists. In this two-part paper, we propose an implementable set of conditions that can enforce these properties for any RTO algorithm. This second part examines the practical side of the sufficient conditions for feasibility and optimality (SCFO) proposed in the first and focuses on how they may be enforced in real application, where much of the knowledge required for the conceptual SCFO is unavailable. Methods for improving convergence speed are also considered.Comment: 56 pages, 15 figure

    Sufficient Conditions for Feasibility and Optimality of Real-Time Optimization Schemes - I. Theoretical Foundations

    Get PDF
    The idea of iterative process optimization based on collected output measurements, or "real-time optimization" (RTO), has gained much prominence in recent decades, with many RTO algorithms being proposed, researched, and developed. While the essential goal of these schemes is to drive the process to its true optimal conditions without violating any safety-critical, or "hard", constraints, no generalized, unified approach for guaranteeing this behavior exists. In this two-part paper, we propose an implementable set of conditions that can enforce these properties for any RTO algorithm. The first part of the work is dedicated to the theory behind the sufficient conditions for feasibility and optimality (SCFO), together with their basic implementation strategy. RTO algorithms enforcing the SCFO are shown to perform as desired in several numerical examples - allowing for feasible-side convergence to the plant optimum where algorithms not enforcing the conditions would fail.Comment: Working paper; supplementary material available at: http://infoscience.epfl.ch/record/18807

    Implementation techniques for the SCFO experimental optimization framework

    Get PDF
    The material presented in this document is intended as a comprehensive, implementation-oriented supplement to the experimental optimization framework presented in a companion document. The issues of physical degradation, unknown Lipschitz constants, measurement/estimation noise, gradient estimation, sufficient excitation, and the handling of soft constraints and/or a numerical cost function are all addressed, and a robust, implementable version of the sufficient conditions for feasible-side global convergence is proposed.Comment: supplementary document; 66 page

    On linear and quadratic Lipschitz bounds for twice continuously differentiable functions

    Get PDF
    Lower and upper bounds for a given function are important in many mathematical and engineering contexts, where they often serve as a base for both analysis and application. In this short paper, we derive piecewise linear and quadratic bounds that are stated in terms of the Lipschitz constants of the function and the Lipschitz constants of its partial derivatives, and serve to bound the function's evolution over a compact set. While the results follow from basic mathematical principles and are certainly not new, we present them as they are, from our experience, very difficult to find explicitly either in the literature or in most analysis textbooks.Comment: 3 pages; supplementary documen
    corecore